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Abstract—The beam-mode expansion method used in the discus-

sions of the diffraction of a Gaussian wave beam through an aperture

is applied to a system of two circular or square aperture stops, and

the analytical expressions of the power transmission and conversion

coefficients of a fundamental mode through the system are obtained.

By using these expressions, the optimum incidence conditions

that maximize the power transmission coefficient of the fundamental

mode can be known. These conditions coincide formally with those

obtained by Kogelnik and Yariv for an incident wave having a prolate

spheroidal-wave function distribution.

Both circular and square geometries can be analyzed in the

same way.

I. INTRODUCTION

ONE of the important problems in optical systems is

to know the diffraction effects of a wave beam by

an aperture. This problem has been discussed in the

literature [1]–[3]. The most direct method [2] gives the

distributions of the diffraction field. But the beam-mode

expansion method [1], [3] is applicable to the analyses

of more complicated systems. Particularly, an optical

system that consists of two aperture stops has a practical

importance as the noise reduction scheme for laser

amplifiers [4]. This system has first been analyzed for

the incident wave having a prolate spheroidal-wave

function distribution by using the generalized con focal

resonator theory [5], [6]. However, practical wave

beams that are often used in optical transmission have a

Gaussian distribution [7]. The purpose of this paper is,

therefore, to investigate the transmission of a Gaussian

wave beam through two consecutive apertures. This

result is useful to the design of noise filters.

,In Section II, the analytical expressions of the mode

transmission and the mode conversion coefficients for an

optical wave beam through a circular or square aperture

are given. In Section III, the beam-mode expansion

method is applied to the system of two aperture stops

when the incident wave beam is a fundamental mode.

In Section IV, the optimum ccmditions which maximize

the power transmission coefficient of the fundamental

mode are obtained, and the input power loss caused by

the blocking area of the first aperture is given in the

case of the optimum incidence.
Numerical results are shown for circular geometries.
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II. MODE TRANSMISSION AND MODE CONVERSION

COEFFICIENTS THROUGH AN APERTURE FOR AN

OPTICAL WAVE BEAM

The optical wave beam which has its smallest spot

size w. at z = – z, is given by [7]
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where k is the wavenumber of the field which is related

to the wavelength h by lC = 27r/A, and
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The generalized Laguerre polynomial Lnm (X) is given by

where
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n—i

is the binomial coefficient.

Let this optical wave beam be normally incident on a

circular aperture of radius a which is located at z = zo

as shown in Fig. 1. The propagation axis of the wave

beam is assumed to pass through the center of the aperture.

The diffraction field in the Fresnel or the Fraunhofer

region is obtained by using the Kirchh off-Huygens

diffraction formula. This is a good approximation when

the aperture radius a is much larger than the wavelength

of the field [8].

This diffraction field is then expanded into a series of

beam-mode functions as follows:
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Fig. 1. An incident optical wave beam and an apeztuze A.

The expansion coefficients {C~nfi; } are given
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where to and qo represent the values of ~ and q at the

position of the aperture.

The beam-mode function {tn. ) are orthonormal, there-

fore, these coefficients can be regarded as the mode

transmission and the mode conversion coefficients [9].

For rectangular geometries, the incident wave beam is

given by [10]

6W(W,Z) = (T2m+n:!n!)1/’

.exp [–jk(z + 2,) ]H~(qz)H. (qy)

.exp [—* T2&(X2 + y2)
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and the mode transmission and the mode conversion

coefficients are, by changing the results shown in [3] into

a more convenient and more generalized form [11], given

as follows:
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Fig. 2. A system of two apertuze stops and an incident optical
wave beam.
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h=~(t+i–2p–2q) (12)
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and 2a is the length of the side of the aperture.

The error function @(X) and the Hermite function

H,(X) are given by

lx

/‘(x) = (27r)’/’ o ‘Xp (– ‘2) ‘y
(14)

H,(X) = (–1)’ exp (X2) -&, exp (–X’). (15)

III. POWER TRANSMISSION COEFFICIENT OF A

FUNDAMENTAL MODE THROUGH A SYSTEM OF

Two APERTURE STOPS

In this section, the case of a fundamental mode incidence

is considered. Let the fundamental mode ~oo be incident

on a system of two aperture stops as shown in Fig. 2.

The apertures Al and Az are separated by distance d,

which is much larger than the radii al and ~ of the

apertures Al and Ap, respectively.

The power of the fundamental mode contained in the

output field, or in other words, the power transmission

coetiicient of this mode through the system, is given by

‘i- = ] ; CorJ(’)’*con(’)o’p (16)
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Fig. 3. The power transmission coefficient r of the fundamental
mode as a function of the position of the beam waist (— z.) which
is normalized with respect to the separation d of the apertures.
The acceptance factor ~ is equal to unity. (a) The aperture radii
al and a~ are equal to a. (b) The smallest spot size w, is equal to
(ala, /2)’l’.
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Introducing the following parameters
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we can rewrite (18) and (19) as follows:
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The parameter U is defined as the acceptance factor [6].

The power transmission cc,efficient r is divided into

two parts, that is, it can be represented as the sum of

ra and rh. ra represents the fraction of the power of the
fundamental mode that pat~ses directly through the

optical system without being changed into higher modes

by the apertures Al and Az, and is given by

~d = {COO(1)OOCM(2)W3}2

= {1 – exp (–nl/a12) }2 {1 – exp (–q20’c&) )2. (24)

The meaning of 7A = r – Td can be seen from (16) and

(24); r~ is the contribution due to the mode conversion

by the apertures. In calculating % we must take into

consideration the phase term in (17).

The power of the higher modes in the output field,

which originated in transmitting the optical system, is

given by

The power transmission coefhcient T changes according

to the incident conditions. Fig. 3(a) and (b) shows two

numerical examples where the acceptance factor U = 1.

In this paper, only the effects of the first three higher

modes are considered for numerical computations.

Fig. 3(a) shows the coefficient r when w. and z, of

the incident beam are varied, while al and & are kept

constant and equal to a. In this case, ~ takes its maximum

values for ( —z.) /d = 0.5 independently of w.. This
means that the position of the beam waist of the incident

wave beam is in the middle between two apertures.

There are two w, that give the same maximum value of

r, except when WSis equal to a/@. But r decreases from

the maximum value more rapidly for the smaller value

of them than for the larger one, depending upon z,.

Fig. 3(b) shows the coefficient r when al/~ and z,

are varied, while w, is kept constant. From this figure,

it can be seen that as the ratio al/~ increases, the position

of the beam waist ( —.z,) at which r takes its maximum

value approaches the position of the smaller aperture.
For rectangular geometries, the power transmission

coefkient is given by

This coefficient also is represented as the sum of rd

and rh. rd is given by

T,j = { f&(1)00&(2)00 ]2 = {4@(%%~oaJ @(@n20as) }4 (28)

where 2al and 2% are the length of the side of the square

apertures Al and Az, respectively. While rb is, as in the

case of circular geometries, defined by rh = T — Td. In

this case, the acceptance factor % is defined by

accordingly, ~20is written as follows:

4P*2
‘$20= .$10 + —

T’(Y)112 “

(29)

(30)

The power of higher modes in the output is given by
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Phfi;= I ~ COO(1)mnf&(2)fiz12 (32)
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where ~’ represents the sum for % > 0 and ?i > 0

except for % = fi = O.

IV. CONDITIONS FOR OPTIMUM TRANSMISSION OF THE

FUNDAMENTAL MODE

The condition of incidence to maximize the power

transmission coefficient of the fundamental mode is con-

sidered here for the system of two aperture stops.

First of all, when the ratio aJ~ and the acceptance

factor U are given, ,~ is maximized for circular geometries

with respect to ~lo and fl$. This means that we obtain

the smallest spot size w. and the position of the beam

waist ( —z.) of the incident wave beam to maximize 7&

These conditions are represented by

dTd thd— —=0.
I& – i3/38

(33)

Or from (24)
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From these, we obtain the following equation:

~ (ti)l/2.~j = _ !_+’ ~102 (36)

Therefore, .& must be negative.

Substituting (36) into (34) or (35), we also obtain

{ [-H}~(rK,~)=K C)XP [–ZK(~)l/2] 1 – eXp

-:exp(-: )

(W)”2 {1 – exp [–2fc(i?I)112]} = O

(37)

where

K= —:+. (> O). (38)

Equation (37) is solved numerically as shown in Fig. 4.
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F(K,ol)

~lg. 4. Numerical values of ~(., w) defined by (37). For K >1

the values of F(., ~) are obtained from the fact that F(x, W =
‘~(1/K, ~).

The solution of this equation which is of any physical

significance is given by

~=1. (39)

Therefore, we obtain, as the optimum incidence condi-

tions, the following solutions for &O and B*:

()
1/2

(’%0) Wt = – ‘1 (B.) ... =
: +,; W’ (40)

U2

or

(-i)opt=(1+5)’
()

–1/2

(w,) Opt = (am) ‘/2 :+; 9&/40 (41)

From (41) it can be seen that the position of the beam

waist ( —z,) is between the apertures Al and AZ, that is,

0< (–.%) < d.
Then th2 maximum value of ‘Td is given by

(~d)~,a~ = {1 – exp [–2(i?I)’12]}4. (42)

Equations (40) or (41) are obtained to maximize Td,

but numerical analyses show that these conditions also

maximize T. Therefore, the maximum power transmission

coefficient is given by

,m..= 5(-1). [:(-1).(n:J
~=o

[

. 1 – exp [–2(?I)’12] ~,. ~ [2(ti)”2T 1
In obtaining this expression, we used the

relations:

(&20)0Pt = – +,

4

. (43)

following

(44)

tan–l { (i20) .Pt ) – tan–l [ (ho) .Pt ) = ~ . (45)
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Fig. 5. The power ph of the hlgb er modes at the output in the
case of the optimum incidence. Pi is the sum of Ph; for ii > 1.

The spot size WI of the incident wave beam at the

position of the aperture Al is, in the case of the optimum

incidence, given by

(w,) .P, ()
1/2

. &l/4 . M

al 7ra1q “
(46)

For square apertures, we obtain the following equations:

“’2exp(-K=(u)l’2)oE’KT)l’2x’’’l-+2

(47)

( ~:(”)’’2)@[cY%1’41 =00 ’48)
.exp —––

These correspond to (36) and (37), respectively. Equation

(48) also provides us with the solution

K = 1.. (49)

Therefore, the optimum incidence conditions and the

corresponding maximum power transmission coefficient

are given by
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TABLE I
NUMICRICAL VALUES OF (7d)~,X ANDThIN THE CASEOFTHE

(Td)w

o.o48

0,122

0.196

0.265

0,328

0.385

0.436

0.481

0.522

0.559

1.0

0.8
I

‘h

-0.029

-0.060

-0.084

-0.101

-0.113

-0.119

-0.122

-0.122

-0.119

-0.115

OPTIMUM INCIDENCE

(x

1.2
1.4

1,6

1.8

2,0

2.2

2.11

2.6

2.8

3.0
— T

( .d)max ,h

0.622 -0.104

0.6W -0,090

0. -(1-( -0. o-n

0.753 -0. 06k

0.784 -O, O52

0,810 -0.043

0.831 -0.033

0.850 -0.026

0.866 -0.020

0.881 -0.015

=

a

3.5

4.0

4.5

5.0

5.5

6.0

6.5

‘f. o

7.5

8.o
— T

:Td)max Th

0.908 -0.006

0.929 -0.001

0.944 0.001

0.955 0.003

0.964 0.003

0,973. 0.003

0.976 0.003

0.980 0.002

0.983 0.002
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Fig. 6. The power loss P~ caused by the blocking area of the first
aperture and ~~ax, both in the case of the optimum incidence.

and

g=+(t– 2p). (54)

The definition of e; is given by (2). In this case, the spot

size of the incident wave beam on the aperture A ~ is

()(W)o.t_ 2 ~_,,4 = jg ‘“.
(55)

al #2 7ra1&

These results expressed by (46) and (5.5) coincide with

those, obtained in [6].

The maximum power transmission coefficient of the

fundamental mode depends only upon the acceptance

factor, independent of the ratio al/a2, as shown by (43)

and (52). The power ph of the higher modes at the output

for the case of optimum incidence is shown in Fig. 5.

For reference, the numerical results of (~~) ~ax and

rb in the case of the optimum incidence are shown in

Table I.

The power loss caused by the blocking area of the first

aperture is given by

P~ = exp ( – 2W1/2) (56)

for circular geometries and

PL = 1 – [20 (drew’)]’ (57)

for square geometries, both in the case of the optimum

-incidence. Fig. 6 shows this power 10SS and Tmax which

is given by (43) or (52).
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These results will be applied for designing

noise filters.

V. CONCLUSIONS

ON MICROW.4VE THEORY AND TECHNIQUES, VOL. Ml”E22, No. 2, FEBRU.IRY 1974

practical

The power transmission coefficient for an optical wave

beam with a Gaussian field distribution through a system

of two aperture stops is obtained by using the beam-mode

expansion method which has been used to know the

diffraction effects of an aperture.

The optimum conditions that maximize the power

transmission coefficient of a fundamental beam mode are

also obtained. These conditions coincide formally with

those given by Kogelnik and Yariv for the incident wave

having a prolate spheroidal-wave function distribution.

The maximum power transmission coefficient can be

represented as a function of only the acceptance factor.

When the noise originated from the spontaneous

emission is added to the incident Gaussian wave beam,

it is important to obtain the maximum signal-to-noise

ratio at the output. This problem could be solved by the

method developed here.

The analysis adopted here can be applied to both

circular and square geometries, which is one of the char-

acteristics of the beam-mode expansion method.
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Analysis of Electromagnetic-Wave Modes

in P&isotropic Slab Waveyide

YUTAKA SATOMURA, MASANORI MATSUHARA, AND NOBUAKI, KUMAGAI, SENIOR MEMBER, IEEE

Abstract—Electromagnetic-wave modes propagating in aniso-

tropic slab waveguide are analyzed theoretically in detail. The propa-

gation conditions are derived under which waves can propagate

along the axis of the guide. A two-dimensional three-layered wave-

guidlng structure consisting of an ankotropic dielectric slab coated
on, or immersed in, isotropic surrounding substrate materials is
considered as a typical configuration of the guide. Field-intensity
distributions of the propagating modes and their propagation con-
stants are obtained by numerical computations. Techniques for
achieving the mode discrhnination and the single-mode operation
are given. Some possible applications in integrated optics are
suggested.

I. INTRODUCTION

THE electromagnetic-wave modes propagating along a

slab waveguide consisting of isotropic materials have

been investigated extensively as a typical boundary

Manuscript received February 28, 1973; revised July 13, 1973.
The authors are with the Department of Communication En-

gineering, Faculty of Engineering, Osaka University, Osaka, Japan.

value problem of electromagnetic-wave theory. For the

last few years, this problem has evoked much interest in

connection with the development of optical integrated

circuits.

On the other hand, the analysis of wave modes in a

slab waveguide with anisotropic materials is also of
great interest from both the theoretical and practical

points of view. To the authors’ knowledge, however, little

work has been done so far on slab waveguides consisting

of anisotropic media, and most of it was restricted to the

guide using magnetized gyrotropic ferrites [1].

Recently, Wang et al. [2] mentioned the possibility y of

forming optical devices such as gyrators, optical switches,

light modulators, etc., using thin-film waveguide with

anisotropic materials as substrates. Nelson and Mc-

Kenna [3] treated the electromagnetic modes of aniso-

tropic dielectric waveguides at p-n junctions, and Andrews

[4] discussed the crystal symmetry effects on nonlinear


