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Transmission of an Optical Wave Beam Through a

System of Two Aperture Stops

KAZUMASA TANAKA anp OTOZO FUKUMITSU

Abstract—The beam-mode expansion method used in the discus-
sions of the diffraction of a Gaussian wave beam through an aperture
is applied to a system of two circular or square aperture stops, and
the analytical expressions of the power transmission and conversion
coefficients of a fundamental mode through the system are obtained.

By using these expressions, the optimum incidence conditions
that maximize the power transmission coefficient of the fundamental
mode can be known. These conditions coincide formally with those
obtained by Kogelnik and Yariv for an incident wave having a prolate
spheroidal-wave function distribution.

Both circular and square geomeiries can be analyzed in the
same way.

I. INTRODUCTION

NE of the important problems in optical systems is

to know the diffraction effects of a wave beam by
an aperture. This problem has been discussed in the
literature [1]-[37]. The most direct method [2] gives the
distributions of the diffraction field. But the beam-mode
expansion method [17, [3] is applicable to the analyses
of more complicated systems. Particularly, an optical
system that consists of two aperture stops has a practical
importance as the noise reduction scheme for laser
amplifiers [4]. This system has first been analyzed for
the incident wave having a prolate spheroidal-wave
function distribution by using the generalized confocal
resonator theory [5], [6]. However, practical wave
beams that are often used in optical transmission have a
Gaussian distribution [77]. The purpose of this paper is,
therefore, to investigate the transmission of a Gaussian
wave beam through two consecutive apertures. This
result is useful to the design of noise filters.

In Section II, the analytical expressions of the mode
transmission and the mode conversion coefficients for an
optical wave beam through a circular or square aperture
are given. In Section III, the beam-mode expansion
method is applied to the system of two aperture stops
when the incident wave beam is a fundamental mode.
In Section IV, the optimum conditions which maximize
the power transmission coefficient of the fundamental
mode are obtained, and the input power loss caused by
the blocking area of the first aperture is given in the
case of the optimum incidence.

Numerical results are shown for circular geometries.
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II. MobpeE TrANsMISSION AND MobpeE CONVERSION
COEFFICIENTS THROUGH AN APERTURE FOR AN
OpticAL. WAvVE Beam

The optical wave beam which has its smallest spot
size w, at z = — z, is given by [7]
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is the binomial coefficient.

Let this optical wave beam be normally incident on a
circular aperture of radius a which is located at z = 2
as shown in Fig. 1. The propagation axis of the wave
beam is assumed to pass through the center of the aperture.
The diffraction field in the Fresnel or the Fraunhofer
region is obtained by using the Xirchhoff-Huygens
diffraction formula. This is a good approximation when
the aperture radius a is much larger than the wavelength
of the field [8].

This diffraction field is then expanded into a series of
beam-mode functions as follows:
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Fig. 1. Anincident optical wave beam and an aperture A.

The expansion coefficients {C...""} are given by [3]
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where % and 7 represent the values of £ and 5 at the
position of the aperture.

The beam-mode function {Ym.} are orthonormal, there-
fore, these coefficients can be regarded as the mode
transmission and the mode conversion coefficients [9].

For rectangular geometries, the incident wave beam is
given by [10]
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and the mode transmission and the mode conversion
coefficients are, by changing the results shown in [37] into
a more convenient and more generalized form [117], given
as follows:
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Fig. 2. A gsystem of two aperture stops and an incident optical
wave beam.
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and 2a is the length of the side of the aperture.
The error function ®(X) and the Hermite funetion
H.(X) are given by

8(X) = /X exp (—Y?) dY (14)

(2r) 2

dt
H,(X) = (—1)texp (X?) X P (—X32).

(15)

II1. Power TransmissioN COEFFICIENT OF A

FunpAMENTAL MODE THROUGH A SYSTEM OF
Two APERTURE STOPS

In this section, the case of a fundamental mode incidence
is considered. Let the fundamental mode ¥ be incident
on a system of two aperture stops as shown in Fig. 2.
The apertures 4; and A4, are separated by distance d,
which is much larger than the radii a; and a; of the
apertures Ay and A, respectively.

The power of the fundamental mode contained in the
output field, or in other words, the power transmission
coefficient of this mode through the system, is given by
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Fig. 3. The power transmission coefficient » of the fundamental
mode as a function of the position of the beam waist (—z,) which
is normalized with respect to the separation d of the apertures.
The acceptance factor Y is equal to unity. (a) The aperture radii

a; and a, are equal to a. (b) The smallest spot size w, is equal to
(a1a2/2)V2,

2z, V2
b0 = s Mo = I PO (18)
_2(z+ d) _ V2
20 = Tk N = oL+ By (19)
Introducing the following parameters
7'.2(,/120/22
A = g (20)
_ (a[aﬁ)lm
Bs = " (21)
we can rewrite (18) and (19) as follows:
2 1/2
o = B <a1a2(l + &3)) 22)
»832 / 2 >1/2
= o =8(—5) .
N EA I e -

The parameter ¥ is defined as the acceptance factor [6].

The power transmission ccefficient = is divided into
two parts, that is, it can be represented as the sum of
7a and 7. 74 represents the fraction of the power of the
fundamental mode that passes directly through the
optical system without being changed into higher modes
by the apertures A, and A4,, and is given by

7a = {Co®W( @00}
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The meaning of 7, = 7 — 74 can be seen from (16) and
(24); 7, is the contribution due to the mode conversion
by the apertures. In calculating r,, we must take into
consideration the phase term in (17).

The power of the higher modes in the output field,
which originated in transmitting the optical system, is
given by

thzphﬁ
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The power transmission coefficient 7 changes according
to the incident conditions. Fig. 3(a) and (b) shows two
numerical examples where the acceptance factor I = 1.
In this paper, only the effects of the first three higher
modes are considered for numerical computations.

Fig. 3(a) shows the coeflicient + when w, and 2z, of
the incident beam are varied, while a; and a; are kept
constant and equal to a. In this case, 7 takes its maximum
values for (—z,)/d = 0.5 independently of w, This
means that the position of the beam waist of the incident
wave beam is in the middle between two apertures.
There are two w, that give the same maximum value of
7, except when w, is equal to a/V2. But r decreases from
the maximum value more rapidly for the smaller value
of them than for the larger one, depending upon z,.

Fig. 3(b) shows the coefficient r when a;/a; and &z,
are varied, while w, is kept constant. From this figure,
it can be seen that as the ratio a;/a, increases, the position
of the beam waist (—z;) at which 7 takes its maximum
value approaches the position of the smaller aperture.

For rectangular geometries, the power transmission
coeflicient is given by

o0
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This coefficient also is represented as the sum of 74
and 7. 74 is given by

74 = {CopP0CoPW}2 = {4‘19(\/—2—7710(11)‘19(\@7120&2)}4

where 2a; and 2a, are the length of the side of the square
apertures A; and A,, respectively. While 7, is, as in the
case of circular geometries, defined by 74 = 7 — 74. In
this case, the acceptance factor ¥ is defined by

(28)
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accordingly, & is written as follows:
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The power of higher modes in the output is given by

Py = 3 P (31)

m,n=0
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where > represents the sum for m >0 and 7 > 0
exeept for m =7 = 0.

IV. ConprrioNs For OPTIMUM TRANSMISSION OF THE
FunpAMENTAL MODE

The econdition of incidence to maximize the power
transmission coefficient of the fundamental mode is con-
sidered here for the system of two aperture stops.

First of all, when the ratio a;/a» and the acceptance
factor % are given, 74 is maximized for circular geometries
with respect to &0 and B.. This means that we obtain
the smallest spot size w, and the position of the beam
waist (—z.) of the incident wave beam to maximize 7q.
These conditions are represented by
a’Td
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From these, we obtain the following equation:
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Therefore, &0 must be negative.
Substituting (36) into (34) or (35), we also obtain
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Equation (37) is solved numerically as shown in Fig. 4.
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Fig. 4. Numerical values of F(x, :) defined by (37). For « > 1
the Era/luesﬂ of F(x, A) are obtained from the fact that F(k, ) =
—FQ/¢, N).

The solution of this equation which is of any physical
significance is given by
(39)

k= 1.

Therefore, we obtain, as the optimum incidence condi-
tions, the following solutions for &y and §;:
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From (41) it can be seen that the position of the beam
waist (—z,) is between the apertures 4; and A,, that is,
0 S (—23) S d.

Then th2 maximum value of =4 is given by

{1 — exp [—2Q)]}*

Equations (40) or (41) are obtained to maximize 74,
but numerical analyses show that these conditions also
maximize 7. Therefore, the maximum power transmission
coefficient is given by
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In obtaining this expression, we used the following
relations:
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Fig. 5. The power P; of the higher modes at the output in the
case of the optimum incidence. Pj is the sum of Ps; for 7 > 1.

The spot size wy of the incident wave beam at the
position of the aperture A, is, in the case of the optimum
incidence, given by

M = 914 = ( M )1/2.
(471 w102

For square apertures, we obtain the following equations:
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These correspond to (36) and (37), respectively. Equation
(48) also provides us with the solution

(49)

Therefore, the optimum incidence conditions and the
corresponding maximum power transmission coefficient
are given by
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TABLE I
NUMERICAL VALUES OF (7¢)max AND 7 IN THE CASE OF THE
OpTiMUM INCIDENCE

o8 (Td)ma.x h oL (Td)max Th oL (Td )max Th

0.1 ] 0.048 ] -0,029 1.2 | 0.622 | -0,104 3.5 { 0.908 | ~-0,006
0.2 | 0,122 | -0.060 1.4 | 0.67% | -0,090 4.0 | 0.929 | -0.001
0.3 ] 0.196 | ~0.084 1.6 | 0.717 | -0.077 4,5 | 0.94% 0.001
0.4 | 0.265 | -0.101 1.8 | 0.753 | -0.064 5.0 | 0.955 0.003
0.5 | 0.328 | -0.113 2,0 { 0,784 | -0.052 5.5 | 0.964 0.003
0.6 | 0.385 | -0.119 2,2 | 0,810 | -0.043 6.0 | 0,971 0.003
0.7 | 0.436 | -0.122 2,4 | 0.831 | -0.033 6.5 | 0.976 0.003
0.8 | 0.481 | -0.122 2.6 } 0.850 | -0.026 7.0 | 0.980 0.002
0.9 | 0.522 | -0.119 2.8 | 0.866 | -0.020 7.5 | 0.983 0.002
1.0 ] 0.559 } -0.115 3.0 | 0.881 | -0.015 8.0 1 0.986 | 0.001
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Fig. 6. The power loss Py, caused by the blocking area of the first
aperture and 7ma., both in the case of the optimum incidence.

and
g = 3(t— 2p).

The definition of ¢; is given by (2). In this case, the spot
size of the incident wave beam on the aperture A; is

_(_1_01)"_“ _ 2 914 — M\
o w2 Ta@)

These results expressed by (46) and (55) coincide with
those obtained in [6].

The maximum power transmission coefficient of the
fundamental mode depends only upon the acceptance
factor, independent of the ratio ai/as, as shown by (43)
and (52). The power P, of the higher modes at the output
for the case of optimum incidence is shown in Fig. 5.

For reference, the numerical results of (74)max and
7 in the case of the optimum incidence are shown in
Table 1.

The power loss caused by the blocking area of the first
aperture is given by

P = exp (—291/2)
for circular geometrics and

PL =1 — [2(1)(7‘.1/22[1#1) ]2

(54)

(55)

(56)

(57)

for square geometries, both in the case of the optimum
incidence. Fig. 6 shows this power loss and 7ma.. which
is given by (43) or (52).
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These results will be applied for designing practical
noise filters.
V. CoNcLUSIONS

The power transmission coefficient for an optical wave
beam with a Gaussian field distribution through a system
of two aperture stops is obtained by using the beam-mode
expansion method which has been used to know the
diffraction effects of an aperture.

The optimum conditions that maximize the power
transmission coefficient of a fundamental beam mode are
also obtained. These conditions coincide formally with
those given by Kogelnik and Yariv for the incident wave
having a prolate spheroidal-wave function distribution.
The maximum power transmission coefficient can be
represented as a function of only the acceptance factor.

When the noise originated from the spontaneous
emission is added to the incident Gaussian wave beam,
it is important to obtain the maximum signal-to-noise
ratio at the output. This problem could be solved by the
method developed here.

The analysis adopted here can be applied to both
circular and square geometries, which is one of the char-
acteristics of the beam-mode expansion method.
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Analysis of Electromagnetic-Wave Modes
in Anisotropic Slab W aveguide

YUTAKA SATOMURA, MASANORI MATSUHARA, axp NOBUAKI KUMAGAI, SENIOR MEMBER, IEEE

Abstract—Electromagnetic-wave modes propagating in aniso-
tropic slab waveguide are analyzed theoretically in detail. The propa~
gation conditions are derived under which waves can propagate
along the axis of the guide. A two-dimensional three-layered wave-
guiding structure consisting of an anisotropic dielectric slab coated
on, or immersed in, isotropic surrounding substrate materials is
considered as a typical configuration of the guide. Field-intensity
distributions of the propagating modes and their propagation con-
stants are obtained by numerical computations. Techniques for
achieving the mode discrimination and the single-mode operation
are given. Some possible applications in integrated optics are
suggested.

1. INTRODUCTION

HE: electromagnetic-wave modes propagating along a

slab waveguide consisting of isotropic materials have

been investigated extensively as a typical boundary
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value problem of electromagnetic-wave theory. IFor the
last few years, this problem has evoked much interest in
connection with the development of optical integrated
circuits.

On the other hand, the analysis of wave modes in a
slab waveguide with anisotropic materials is also of
great interest from both the theoretical and practical
points of view. To the authors’ knowledge, however, little
work has been done so far on slab waveguides consisting
of anisotropic media, and most of it was restricted to the
guide using magnetized gyrotropic ferrites [17].

Recently, Wang et al. [2] mentioned the possibility of
forming optical devices such as gyrators, optical switches,
light modulators, ete., using thin-film waveguide with
anisotropic materials as substrates. Nelson and Mec-
Kenna [3] treated the electromagnetic modes of aniso-
tropic dielectric waveguides at p-n junctions, and Andrews
[4] discussed the crystal symmetry effects on nonlinear



